Quickstart Guide#

(Optional) Create a virtual environment for using LangFair#

We recommend creating a new virtual environment using venv before installing LangFair. To do so, please follow instructions here.

Installing LangFair#

The latest version can be installed from PyPI:

pip install langfair

Usage Examples#

Below are code samples illustrating how to use LangFair to assess bias and fairness risks in text generation and summarization use cases. The below examples assume the user has already defined a list of prompts from their use case , prompts.

Generate LLM responses#

To generate responses, we can use LangFair’s ResponseGenerator class. First, we must create a langchain LLM object. Below we use ChatVertexAI, but any of LangChain’s LLM classes may be used instead. Note that InMemoryRateLimiter is to used to avoid rate limit errors.

from langchain_google_vertexai import ChatVertexAI
from langchain_core.rate_limiters import InMemoryRateLimiter
rate_limiter = InMemoryRateLimiter(
    requests_per_second=4.5,
    check_every_n_seconds=0.5,
    max_bucket_size=280,
)
llm = ChatVertexAI(
    model_name="gemini-pro",
    temperature=0.3,
    rate_limiter=rate_limiter
)

We can use ResponseGenerator.generate_responses to generate 25 responses for each prompt, as is convention for toxicity evaluation.

from langfair.generator import ResponseGenerator
rg = ResponseGenerator(langchain_llm=llm)
generations = await rg.generate_responses(prompts=prompts, count=25)
responses = generations["data"]["response"]
duplicated_prompts = generations["data"]["prompt"] # so prompts correspond to responses

Compute toxicity metrics#

Toxicity metrics can be computed with ToxicityMetrics. Note that use of torch.device is optional and should be used if GPU is available to speed up toxicity computation.

# import torch # uncomment if GPU is available
# device = torch.device("cuda") # uncomment if GPU is available
from langfair.metrics.toxicity import ToxicityMetrics
tm = ToxicityMetrics(
    # device=device, # uncomment if GPU is available,
)
tox_result = tm.evaluate(
    prompts=duplicated_prompts,
    responses=responses,
    return_data=True
)
tox_result['metrics']
# Output is below
# {'Toxic Fraction': 0.0004,
# 'Expected Maximum Toxicity': 0.013845130120171235,
# 'Toxicity Probability': 0.01}

Compute stereotype metrics#

Stereotype metrics can be computed with StereotypeMetrics.

from langfair.metrics.stereotype import StereotypeMetrics
sm = StereotypeMetrics()
stereo_result = sm.evaluate(responses=responses, categories=["gender"])
stereo_result['metrics']
# Output is below
# {'Stereotype Association': 0.3172750176745329,
# 'Cooccurrence Bias': 0.4476633365427837,
# 'Stereotype Fraction - gender': 0.08}

Generate counterfactual responses and compute metrics#

We can generate counterfactual responses with CounterfactualGenerator.

from langfair.generator.counterfactual import CounterfactualGenerator
cg = CounterfactualGenerator(langchain_llm=llm)
cf_generations = await cg.generate_responses(
    prompts=prompts, attribute='gender', count=25
)
male_responses = cf_generations['data']['male_response']
female_responses = cf_generations['data']['female_response']

Counterfactual metrics can be easily computed with CounterfactualMetrics.

from langfair.metrics.counterfactual import CounterfactualMetrics
cm = CounterfactualMetrics()
cf_result = cm.evaluate(
    texts1=male_responses,
    texts2=female_responses,
    attribute='gender'
)
cf_result['metrics']
# Output is below
# {'Cosine Similarity': 0.8318708,
# 'RougeL Similarity': 0.5195852482361165,
# 'Bleu Similarity': 0.3278433712872481,
# 'Sentiment Bias': 0.00099471451876019657}

Alternative approach: Semi-automated evaluation with AutoEval#

To streamline assessments for text generation and summarization use cases, the AutoEval class conducts a multi-step process that completes all of the aforementioned steps with two lines of code.

from langfair.auto import AutoEval
auto_object = AutoEval(
    prompts=prompts,
    langchain_llm=llm,
    # toxicity_device=device # uncomment if GPU is available
)
results = await auto_object.evaluate()
results['metrics']
# Output is below
# {'Toxicity': {'Toxic Fraction': 0.0004,
#   'Expected Maximum Toxicity': 0.01384513012017123,
#   'Toxicity Probability': 0.01},
# 'Stereotype': {'Stereotype Association': 0.3172750176745329,
#   'Cooccurrence Bias': 0.4476633365427837,
#   'Stereotype Fraction - gender': 0.08,
#   'Expected Maximum Stereotype - gender': 0.6035516738891,
#   'Stereotype Probability - gender': 0.27036},
# 'Counterfactual': {'male-female': {'Cosine Similarity': 0.8318708,
#   'RougeL Similarity': 0.5195852482361165,
#   'Bleu Similarity': 0.3278433712872481,
#   'Sentiment Bias': 0.00099471451876019577}}}