uqlm.black_box.bert.BertScorer#
- class uqlm.black_box.bert.BertScorer(device=None)#
Bases:
SimilarityScorer
- __init__(device=None)#
Class for computing BERTScore values between original responses and candidates. For more on BERTScore, refer to Zhang et al.(2020) [1].
- Parameters:
device (torch.device input or torch.device object, default=None) – Specifies the device that classifiers use for prediction. Set to “cuda” for classifiers to be able to leverage the GPU.
Methods
__init__
([device])Class for computing BERTScore values between original responses and candidates.
evaluate
(responses, sampled_responses[, ...])This method computes model-based text similarity metrics values for the provided pairs of texts.
- evaluate(responses, sampled_responses, progress_bar=None)#
This method computes model-based text similarity metrics values for the provided pairs of texts.
- Return type:
List
[float
]- Parameters:
responses (list of strings) – Original LLM response
sampled_responses (list of list of strings) – Candidate responses to be compared to the original response
progress_bar (rich.progress.Progress, default=None) – If provided, displays a progress bar while scoring responses
- Returns:
Mean BertScore values
- Return type:
List of float
References