uqlm.utils.grader.LLMGrader#

class uqlm.utils.grader.LLMGrader(llm, max_calls_per_min=None)#

Bases: object

__init__(llm, max_calls_per_min=None)#

Class for grading LLM responses against a provided set of ground-truth (ideal) answers for the given prompts

Parameters:
  • llm (langchain BaseChatModel) – A langchain llm BaseChatModel. User is responsible for specifying temperature and other relevant parameters to the constructor of their llm object.

  • max_calls_per_min (int, default=None) – Specifies how many api calls to make per minute to avoid a rate limit error. By default, no limit is specified.

Methods

__init__(llm[, max_calls_per_min])

Class for grading LLM responses against a provided set of ground-truth (ideal) answers for the given prompts

grade_responses(prompts, responses, answers)

async grade_responses(prompts, responses, answers, progress_bar=None)#
Return type:

List[bool]

Parameters:
  • prompts (list of str) – A list of input prompts for the model.

  • responses (list of str) – A list of model responses for the prompts.

  • answers (list of str) – A list of ideal (correct) responses

  • progress_bar (rich.progress.Progress, default=None) – If provided, displays a progress bar while scoring responses

References