uqlm.white_box.single_logprobs.SingleLogprobsScorer#
- class uqlm.white_box.single_logprobs.SingleLogprobsScorer(scorers=['normalized_probability', 'min_probability', 'sequence_probability'], length_normalize=True)#
Bases:
LogprobsScorer- __init__(scorers=['normalized_probability', 'min_probability', 'sequence_probability'], length_normalize=True)#
Class for computing WhiteBox UQ scores with a single generation
- Parameters:
scorers (List[str], default=SAMPLED_LOGPROBS_SCORER_NAMES) – Specifies which scorers to compute. Must be a subset of [“semantic_negentropy”, “semantic_density”, “monte_carlo_probability”, “consistency_and_confidence”].
length_normalize (bool, default=True) – Specifies whether to length normalize the logprobs. This attribute affect the response probability computation for three scorers (semantic_negentropy, semantic_density, and monte_carlo_probability).
Methods
__init__([scorers, length_normalize])Class for computing WhiteBox UQ scores with a single generation
evaluate(logprobs_results)Compute scores from logprobs results
extract_logprobs(single_response_logprobs)Extract log probabilities from token data
extract_probs(single_response_logprobs)Extract probabilities from token data
extract_top_logprobs(single_response_logprobs)Extract top log probabilities for each token
- evaluate(logprobs_results)#
Compute scores from logprobs results
- Return type:
Dict[str,List[float]]
- static extract_logprobs(single_response_logprobs)#
Extract log probabilities from token data
- Return type:
ndarray
- extract_probs(single_response_logprobs)#
Extract probabilities from token data
- Return type:
ndarray
- static extract_top_logprobs(single_response_logprobs)#
Extract top log probabilities for each token
- Return type:
List[ndarray]
References