uqlm.black_box.consistency.ConsistencyScorer#
- class uqlm.black_box.consistency.ConsistencyScorer(nli_model_name='microsoft/deberta-large-mnli', max_length=2000, use_best=False, scorers=['noncontradiction', 'entailment'])#
Bases:
SimilarityScorer- __init__(nli_model_name='microsoft/deberta-large-mnli', max_length=2000, use_best=False, scorers=['noncontradiction', 'entailment'])#
Initialize the NonContradictionScorer.
- Parameters:
use_best (bool, default=False) – Specifies whether to swap the original response for the uncertainty-minimized response based on semantic entropy clusters.
Methods
__init__([nli_model_name, max_length, ...])Initialize the NonContradictionScorer.
evaluate(responses, sampled_responses[, ...])Evaluate confidence scores on LLM responses.
- evaluate(responses, sampled_responses, available_nli_scores={}, progress_bar=None)#
Evaluate confidence scores on LLM responses.
- Return type:
Dict[str,Any]- Parameters:
responses (list of strings) – Original LLM response
sampled_responses (list of list of strings) – Sampled candidate responses to be compared to the original response
progress_bar (rich.progress.Progress, default=None) – If provided, displays a progress bar while scoring responses
- Returns:
Dictionary containing mean NLI and (optionally) semantic entropy scores. The dictionary will also contain original and multiple responses, updated if use_best is True
- Return type:
Dict
References